Experimental Study and Numerical Modeling of Surface/Subsurface Flow at Field Scale

نویسندگان

  • Lei Zhu
  • Dedong Liu
  • Chengli Zhu
چکیده

Infiltration which occurred in the process of runoff on farmland surface causes the increasing of soil moisture in unsaturated zone. It’s necessary to comprehend the dynamic process during farmland runoff process, analyze the coupling mechanism of water movement and solute transport among surface/subsurface zone. In this paper, a physically-based, spatially-distributed model was built for simulation of surface/subsurface flow and the interactions between two domains. The system is represented by the three-dimensional saturated – unsaturated flow equation for the subsurface, coupled with the diffusion wave equation for overland flow, Ground surface unevenness at the grid scale is incorporated via the concept of detention storage. The system of equations is discretized using a fully implicit procedure, with the Newton-Raphson method to handle non-linearity of the equations. In order to assess this modeling approach, the simulations compared with the experiment results. It shows that the model can simulate the process of farmland runoff production and soil water movement accurately. Finally, Statistics and mass balance analysis was also performed to examine the model accuracy and response to changes of specific input data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Effect of Free Surface on Hydrodynamic Performance of Propeller

Simulation of the flow around propeller is a complex fluid flow problem, especially when the propeller is close to free surface. In this study, the effect of different depths on the performance and efficiency of a B-Wageningen series close to surface of water have been numerically investigated. For this purpose the ANSYS-FLUENT commercial software has been used to solve the viscous, incompressi...

متن کامل

Conjunctive surface–subsurface modeling of overland flow

In this paper, details of a conjunctive surface–subsurface numerical model for the simulation of overland flow are presented. In this model, the complete onedimensional Saint-Venant equations for the surface flow are solved by a simple, explicit, essentially non-oscillating (ENO) scheme. The two-dimensional Richards equation in the mixed form for the subsurface flow is solved using an efficient...

متن کامل

Predicting Depth and Path of Subsurface Crack Propagation at Gear Tooth Flank under Cyclic Contact Loading

In this paper, a two-dimensional computational model is proposed for predicting the initiation position and propagation path of subsurface crack of spur gear tooth flank. In order to simulate the contact of teeth, an equivalent model of two contacting cylinders is used. The problem is assumed to be under linear elastic fracture mechanic conditions and finite element method is used for numerical...

متن کامل

Numerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater

Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard  turbulence closure model. This study aims to explore the ability of a time splitting method ...

متن کامل

Numerical Modeling of the Stepped Planing Hull in Calm Water

This article describes a 3D CFD (computational fluid dynamics) simulation implementation of the stepped planning hull in calm water. The turbulent free surface flow around the stepped planing hull is computed with a RANSE method, using the solver ANSYS-CFX. The turbulence model used is standard k–ε. In order to simulate the disturbed free surface, VOF model is implemented. The CFD model has bee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JSW

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013